Default
Question
Differentiate $f(x)$ = $x^3 ln(x)$
Solution
The correct answer is $x^2 (1 + 3 ln (x))$
Explanation
As per Product rule,
$\dfrac{d}{dx} (f(x)g(x))$ = $f(x)g′(x) + f′(x)g(x)$
$f(x)$ = $x^3 ln(x)$
$f′(x)$ = $x^3 D(ln (x)) + D(x^3) ln(x)$
= $x^3 \dfrac{1}{x} + 3x^2 ln(x)$
= $x^2 + 3x^2 ln(x)$
= $x^2 (1 + 3 ln(x))$
6e54e23b-2f29-11ed-aec7-5405dbb1cb03